

Mount Polley Mining Corporation

an Imperial Metals company

October 30, 2014

Results of Analyses of Mine Processing Reagents

In response to questions raised about the possibility of release of process chemicals used in Mount Polley's mine milling process, a set of seven samples of tailings deposited along Hazeltine Creek and a sample of soil underlying the tailings were submitted for laboratory analysis to identify if mine process reagents were present, and if so, at what concentrations they might be present. These reagents are used to separate and concentrate copper and gold ore minerals from the crushed gangue minerals being mined as ore at the site.

Laboratory analysis of the tailings samples has included:

- Measurement of methyl isobutyl carbinol (MIBC) and total glycols to provide an indication of the presence of flotation agents. Methyl isobutyl ketone (MIBK) was also analyzed given that this compound may occasionally be associated with MIBC as a degradation product;
- Measurement of xanthates (a binding agent) and carbon disulphide which is a possible degradation byproduct of xanthate; and
- Measurement of light and heavy extractable petroleum hydrocarbons (LEPH and HEPH) and polycyclic aromatic hydrocarbons (PAH) which are associated with diesel and kerosene fuels. Although diesel and kerosene were not known process agents at the mine, they are sometimes used in process circuits to enhance flotation at many mine sites.

In all eight samples submitted, none of the substances identified above were present in the tailings samples. These results were not unexpected given that these potential contaminants would be expected to have been consumed during process applications, ending up in the mineral concentrate which is shipped to the smelter, and/or are biodegradable to varying degrees. However, the testing described here was to provide data so that we could appropriately respond to questions that members of First Nations and the local community have asked us about the process reagents

The BC Ministry of Environment also carried out testing of tailings material for MIBC and similar to our findings, <u>their laboratory analysis</u> did not find MIBC residues.

Lime (calcium oxide) is also used at the Mount Polley mine and does end up in the tailings. This is the same lime that is used on residential lawns to control soil pH. However, it is not present in appreciable amounts either in the tailings water that was held in the storage facility pre-breach or in the tailings themselves. The pH of the tailings water was approximately 8.5 pH units, which is within the water quality guidelines for freshwater aquatic life. The pH of the samples referred to above was moderately elevated over the adjacent soils but not harmful.

Attachment: Mount Polley ALS laboratory report dated October 30, 2014

MOUNT POLLEY MINING CORP. ATTN: Colleen Hughes PO Box 12 Likely BC V0L 1N0 Date Received:16-SEP-14Report Date:30-OCT-14 16:55 (MT)Version:FINAL REV. 2

Client Phone: 250-790-2215

Certificate of Analysis

L1518225

Lab Work Order #:

Project P.O. #: Job Reference: C of C Numbers:

Legal Site Desc:

NOT SUBMITTED 621717 10-045380, 10-045393, 10-045395, 10-045399, 10-045402, 10-045403, 10-045409 Mt Polley Mining Corp 2014

Comments: Addendum.

30-OCT-2014 Revision 2: This revision includes only specific hydrocarbons analyses.

Can Dang Senior Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

ALS ENVIRONMENTAL ANALYTICAL REPORT

L1518225 CONTD.... PAGE 2 of 9 30-OCT-14 16:55 (MT) Version: FINAL REV. 2

				Version: FINAL REV		
	Sample ID Description Sampled Date Sampled Time Client ID	L1518225-41 Soil 11-SEP-14 13:10 ST01-03-140911	L1518225-43 Soil 11-SEP-14 11:40 ST01-05-01- 140911	L1518225-57 Soil 13-SEP-14 12:50 ST16-03-140913	L1518225-59 Soil 13-SEP-14 09:50 ST18-03-01- 140913	L1518225-60 Soil 13-SEP-14 09:50 ST18-03-02- 140913
Grouping	Analyte					
SOIL						
Volatile Organic Compounds	Acetone (mg/kg)	<4.0	<4.0	<4.0	<4.0	<4.0
	Carbon Disulfide (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	n-Heptane (nC7) (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	2-Hexanone (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Methyl ethyl ketone (MEK) (mg/kg)	<20	<20	<20	<20	<20
	Methyl isobutyl ketone (MIBK) (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Methyl isobutyl carbinol (MIBC) (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	n-Octane (nC8) (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	n-Pentane (mg/kg)	<2.5	<2.5	<2.5	<2.5	<2.5
	1,2,3-Trimethylbenzene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Surrogate: 4-Bromofluorobenzene (SS) (%)	93.6	96.5	91.3	94.9	89.4
	Surrogate: 1,4-Difluorobenzene (SS) (%)	96.5	98.5	94.5	99.0	96.8
Hydrocarbons	EPH10-19 (mg/kg)	<200	<200	<200	<200	<200
	EPH19-32 (mg/kg)	<200	<200	<200	<200	<200
	LEPH (mg/kg)	<200	<200	<200	<200	<200
	HEPH (mg/kg)	<200	<200	<200	<200	<200
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Acenaphthylene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Anthracene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Benz(a)anthracene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Benzo(a)pyrene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Benzo(b)fluoranthene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Benzo(g,h,i)perylene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Benzo(k)fluoranthene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Chrysene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Dibenz(a,h)anthracene (mg/kg)	<0.050	< 0.050	<0.050	<0.050	<0.050
	Fluoranthene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Fluorene (mg/kg)	<0.050	< 0.050	<0.050	<0.050	<0.050
	Indeno(1,2,3-c,d)pyrene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	2-Methylnaphthalene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Naphthalene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Phenanthrene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Pyrene (mg/kg)	<0.050	<0.050	<0.050	<0.050	<0.050
	Surrogate: Acenaphthene d10 (%)	92.9	95.3	96.5	104.3	97.0
	Surrogate: Chrysene d12 (%)	92.9 111.3	115.0	90.5	104.3	114.3
	Surrogate: Naphthalene d8 (%)	92.2	95.1	95.7	121.1	97.9

L1518225 CONTD.... PAGE 3 of 9 30-OCT-14 16:55 (MT) Version: FINAL REV. 2

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L1518225-63 Soil 13-SEP-14 16:30 ST15-02-02- 140913	L1518225-64 Soil 13-SEP-14 17:00 ST15-03-140913		
Grouping	Analyte				
SOIL					
Volatile Organic Compounds	Acetone (mg/kg)	<4.0	<4.0		
	Carbon Disulfide (mg/kg)	<0.050	<0.050		
	n-Heptane (nC7) (mg/kg)	<0.050	<0.050		
	2-Hexanone (mg/kg)	<0.050	<0.050		
	Methyl ethyl ketone (MEK) (mg/kg)	<20	<20		
	Methyl isobutyl ketone (MIBK) (mg/kg)	<0.050	<0.050		
	Methyl isobutyl carbinol (MIBC) (mg/kg)	<0.050	<0.050		
	n-Octane (nC8) (mg/kg)	<0.050	<0.050		
	n-Pentane (mg/kg)	<2.5	<2.5		
	1,2,3-Trimethylbenzene (mg/kg)	<0.050	<0.050		
	Surrogate: 4-Bromofluorobenzene (SS) (%)	95.9	93.6		
	Surrogate: 1,4-Difluorobenzene (SS) (%)	103.9	102.3		
Hydrocarbons	EPH10-19 (mg/kg)	<200	<200		
-	EPH19-32 (mg/kg)	<200	<200		
	LEPH (mg/kg)	<200	<200		
	HEPH (mg/kg)	<200	<200		
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/kg)	<0.050	<0.050		
	Acenaphthylene (mg/kg)	<0.050	<0.050		
	Anthracene (mg/kg)	<0.050	<0.050		
	Benz(a)anthracene (mg/kg)	<0.050	<0.050		
	Benzo(a)pyrene (mg/kg)	<0.050	<0.050		
	Benzo(b)fluoranthene (mg/kg)	<0.050	<0.050		
	Benzo(g,h,i)perylene (mg/kg)	<0.050	<0.050		
	Benzo(k)fluoranthene (mg/kg)	<0.050	<0.050		
	Chrysene (mg/kg)	<0.050	<0.050		
	Dibenz(a,h)anthracene (mg/kg)	<0.050	<0.050		
	Fluoranthene (mg/kg)	<0.050	<0.050		
	Fluorene (mg/kg)	<0.050	<0.050		
	Indeno(1,2,3-c,d)pyrene (mg/kg)	<0.050	<0.050		
	2-Methylnaphthalene (mg/kg)	<0.050	<0.050		
	Naphthalene (mg/kg)	<0.050	<0.050		
	Phenanthrene (mg/kg)	<0.050	<0.050		
	Pyrene (mg/kg)	< 0.050	<0.050		
	Surrogate: Acenaphthene d10 (%)	100.5	99.1		
	Surrogate: Chrysene d12 (%)	110.1	117.0		
	Surrogate: Naphthalene d8 (%)	100.5	97.4		

ALS ENVIRONMENTAL ANALYTICAL REPORT

L1518225 CONTD.... PAGE 4 of 9 30-OCT-14 16:55 (MT) Version: FINAL REV. 2

					Vers	ion: FINAL REV
	Sample ID Description Sampled Date Sampled Time Client ID	L1518225-41 Soil 11-SEP-14 13:10 ST01-03-140911	L1518225-43 Soil 11-SEP-14 11:40 ST01-05-01- 140911	L1518225-57 Soil 13-SEP-14 12:50 ST16-03-140913	L1518225-59 Soil 13-SEP-14 09:50 ST18-03-01- 140913	L1518225-60 Soil 13-SEP-14 09:50 ST18-03-02- 140913
Grouping	Analyte					
SOIL						
Polycyclic Aromatic Hydrocarbons	Surrogate: Phenanthrene d10 (%)	92.3	99.1	95.7	102.5	95.8

L1518225 CONTD.... PAGE 5 of 9 30-OCT-14 16:55 (MT) Version: FINAL REV. 2

ALS ENVIRONMENTAL ANALYTICAL REPORT

				Version: FIN	IAL REV
	Sample ID Description Sampled Date Sampled Time Client ID	L1518225-63 Soil 13-SEP-14 16:30 ST15-02-02- 140913	L1518225-64 Soil 13-SEP-14 17:00 ST15-03-140913		
Grouping	Analyte				
SOIL					
Polycyclic Aromatic Hydrocarbons	Surrogate: Phenanthrene d10 (%)	96.7	99.6		

	Client Sample ID	Qualifier	Description
L1518225-57	ST16-03-140913	VOCH	Volatile organic compound analysis was conducted on a sample that contained headspace.
L1518225-60	ST18-03-02-140913	VOCH	Volatile organic compound analysis was conducted on a sample that contained headspace.
L1518225-64	ST15-03-140913	VOCH	Volatile organic compound analysis was conducted on a sample that contained headspace.
est Method Re	ferences:		
ALS Test Code	Matrix	Test Description	Method Reference**
ALK-PASTE-VA	Soil	Alkalinity in Soil (Pas	ste) by Colour Carter-CSSS / EPA 310.2 (modified)
A soil extract pro	duced by the saturated	d paste extraction proce	edure is analyzed for alkalinity by methyl orange colourimetry.
C-INORG-SK	Soil	Inorganic Carbon / C	Calcium Carbonate SSSA (1996) P455-456
		n acid in an open system to the carbonate conten	em, carbon dioxide is released to the atmosphere. The decrease in sample weight on the soil.
			r Loss of Carbon Dioxide. P. 455-456 In: J.M. Bartels et al. (ed.) Methods of soil analysis: , WI. Book series no. 5
C-TOT-LECO-SK	Soil	Total Carbon by com	nbustion method SSSA (1996) P. 973-974
			in the reduced CO2 gas is determined using a thermal conductivity detector.
CAT-XTR-SK	Soil	Ammonium Acetate	Extractable Cations CSSS 19.4 - 1M NH4OAc Extraction @ pH 7
Exchangeable C	a, Mg, Na, and K are e		using neutral 1N ammonium acetate, then determined by ICP-OES. This method does
CEC-SK	Soil	Cation Exchange Ca	apacity (NH4OAC Extn) CSSS(1978) 3.321/Comm Soil Sci 17(7)
Soil exchange si	tes are saturated with a	ammonium, then displa	aced with sodium. Ammonium in the extract is determined colorimetrically.
CL-PASTE-COLO	DR-VA Soil	Chloride in Soil (Past	te) by Colourimetry Carter-CSSS / APHA 4500-CI E (modified)
A soil extract pro	duced by the saturated	d paste extraction proce	edure is analyzed for chloride by ferricyanide colourimetry.
EC-PASTE-VA	Soil	Conductivity in Soil ((Paste) by Meter Carter-CSSS / APHA 2510B
A soil extract pro	duced by the saturated	d paste extraction proce	edure is analyzed by conductivity meter.
A soil extract pro			
EPH-TUMB-FID-V Analysis is in acc samples are extr chromatography	A Soil cordance with BC MOE racted with a 1:1 mixtur with flame ionization d	EPH in Solids by Tur Lab Manual method "I e of hexane and acetor	mbler and GCFID BC MOE EPH GCFID Extractable Petroleum Hydrocarbons in Solids by GC/FID", v2.1, July 1999. Soil ne using a rotary extraction technique modified from EPA 3570 prior to gas PH results include Polycyclic Aromatic Hydrocarbons (PAH) and are therefore not
EPH-TUMB-FID-V Analysis is in acc samples are extr chromatography equivalent to Lig	A Soil cordance with BC MOE racted with a 1:1 mixtur with flame ionization d	EPH in Solids by Tur Lab Manual method "I e of hexane and acetor etection (GC-FID). EP ole Petroleum Hydrocar	mbler and GCFID BC MOE EPH GCFID Extractable Petroleum Hydrocarbons in Solids by GC/FID", v2.1, July 1999. Soil ne using a rotary extraction technique modified from EPA 3570 prior to gas 'H results include Polycyclic Aromatic Hydrocarbons (PAH) and are therefore not rbons (LEPH/HEPH). Im Percentage - Calc Calculation
EPH-TUMB-FID-V Analysis is in acc samples are extr chromatography equivalent to Lig ETL-ESP-SK GLY-EXT-FID-VA	A Soil cordance with BC MOE racted with a 1:1 mixtur with flame ionization d ht and Heavy Extractat Soil Soil	EPH in Solids by Tur Lab Manual method "I e of hexane and acetor etection (GC-FID). EP ole Petroleum Hydrocar Exchangeable Sodiu Glycols in Soil by Wr	mbler and GCFIDBC MOE EPH GCFIDExtractable Petroleum Hydrocarbons in Solids by GC/FID", v2.1, July 1999. Soil ne using a rotary extraction technique modified from EPA 3570 prior to gas 'H results include Polycyclic Aromatic Hydrocarbons (PAH) and are therefore not rbons (LEPH/HEPH).um Percentage - CalcCalculation SW-846, METHOD 8015B, EPA
EPH-TUMB-FID-V Analysis is in acc samples are extr chromatography equivalent to Lig ETL-ESP-SK GLY-EXT-FID-VA This analysis is o United States Er followed by treat	A Soil cordance with BC MOE racted with a 1:1 mixtur with flame ionization d ht and Heavy Extractat Soil Soil carried out using proce- nvironmental Protection ment of the extract with	EPH in Solids by Tur Lab Manual method "I e of hexane and acetor etection (GC-FID). EP ole Petroleum Hydrocar Exchangeable Sodiu Glycols in Soil by Wr dures adapted from "Te Agency (EPA). The p a a strong base (NaOH)	mbler and GCFID BC MOE EPH GCFID Extractable Petroleum Hydrocarbons in Solids by GC/FID", v2.1, July 1999. Soil ne using a rotary extraction technique modified from EPA 3570 prior to gas 'H results include Polycyclic Aromatic Hydrocarbons (PAH) and are therefore not rbons (LEPH/HEPH). Im Percentage - Calc Calculation
EPH-TUMB-FID-V Analysis is in acc samples are extr chromatography equivalent to Lig ETL-ESP-SK GLY-EXT-FID-VA This analysis is o United States Er followed by treat	A Soil cordance with BC MOE racted with a 1:1 mixtur with flame ionization d ht and Heavy Extractat Soil Soil carried out using proce twironmental Protection ment of the extract with ad with iso-octane and the	EPH in Solids by Tur Lab Manual method "I e of hexane and acetor etection (GC-FID). EP ole Petroleum Hydrocar Exchangeable Sodiu Glycols in Soil by Wr dures adapted from "Te Agency (EPA). The p a a strong base (NaOH)	mbler and GCFID BC MOE EPH GCFID 'Extractable Petroleum Hydrocarbons in Solids by GC/FID", v2.1, July 1999. Soil ne using a rotary extraction technique modified from EPA 3570 prior to gas 'H results include Polycyclic Aromatic Hydrocarbons (PAH) and are therefore not rbons (LEPH/HEPH). Im Percentage - Calc Calculation rist Shaker GCFID SW-846, METHOD 8015B, EPA est Methods for Evaluating Solid Waste" SW-846, Method 8015B, published by the procedure involves extraction of a subsample of the sediment/soil with deionized water, I) and benzoyl chloride to form the corresponding benzoate esters. The benzoate esters by capillary column gas chromatography with flame ionization detection (FID).
EPH-TUMB-FID-V Analysis is in acc samples are extr chromatography equivalent to Lig ETL-ESP-SK GLY-EXT-FID-VA This analysis is of United States Er followed by treat are then extracte HG-200.2-CVAF-V This analysis is of Environment, 26 sieved through a weighed. The sa	A Soil cordance with BC MOE racted with a 1:1 mixtur with flame ionization d ht and Heavy Extractat Soil Soil carried out using proce twironmental Protection ment of the extract with ad with iso-octane and the VA Soil carried out using proce June 2009, and proce 2 mm (10 mesh) sieve ample is then digested	EPH in Solids by Tur Eab Manual method "I e of hexane and acetor etection (GC-FID). EP ole Petroleum Hydrocar Exchangeable Sodiu Glycols in Soil by Wr dures adapted from "Te Agency (EPA). The p n a strong base (NaOH) the extract is analyzed Mercury in Soil by CN dures from CSR Analyt dures adapted from EP e (this sieve step is omi at 95 degrees Celsius f	mbler and GCFID BC MOE EPH GCFID 'Extractable Petroleum Hydrocarbons in Solids by GC/FID", v2.1, July 1999. Soil ne using a rotary extraction technique modified from EPA 3570 prior to gas 'H results include Polycyclic Aromatic Hydrocarbons (PAH) and are therefore not rbons (LEPH/HEPH). Im Percentage - Calc Calculation rist Shaker GCFID SW-846, METHOD 8015B, EPA est Methods for Evaluating Solid Waste" SW-846, Method 8015B, published by the procedure involves extraction of a subsample of the sediment/soil with deionized water, I) and benzoyl chloride to form the corresponding benzoate esters. The benzoate esters by capillary column gas chromatography with flame ionization detection (FID).
EPH-TUMB-FID-V Analysis is in acc samples are extr chromatography equivalent to Lig ETL-ESP-SK GLY-EXT-FID-VA This analysis is of United States Er followed by treat are then extracte HG-200.2-CVAF-V This analysis is of Environment, 26 sieved through a weighed. The sa Instrumental ana Method Limitatio	 XA Soil cordance with BC MOE cracted with a 1:1 mixtur with flame ionization d ht and Heavy Extractate Soil Soil carried out using proce- vironmental Protection ment of the extract with carried out using proce- vironmental Protection ment of the extract with carried out using proce- une 2009, and proce- 2 mm (10 mesh) sieve ample is then digested allysis is by atomic fluor n: This method is not ally available. By desig 	EPH in Solids by Tur ELab Manual method "I e of hexane and acetor etection (GC-FID). EP ble Petroleum Hydrocar Exchangeable Sodiu Glycols in Soil by Wr dures adapted from "Te Agency (EPA). The p n a strong base (NaOH) the extract is analyzed Mercury in Soil by CV dures from CSR Analyt dures adapted from EP e (this sieve step is omi at 95 degrees Celsius f escence spectrophoton a total digestion technic	mbler and GCFID BC MOE EPH GCFID Extractable Petroleum Hydrocarbons in Solids by GC/FID", v2.1, July 1999. Soil ne using a rotary extraction technique modified from EPA 3570 prior to gas PH results include Polycyclic Aromatic Hydrocarbons (PAH) and are therefore not rbons (LEPH/HEPH). um Percentage - Calc Calculation rist Shaker GCFID SW-846, METHOD 8015B, EPA est Methods for Evaluating Solid Waste" SW-846, Method 8015B, published by the procedure involves extraction of a subsample of the sediment/soil with deionized water, I) and benzoyl chloride to form the corresponding benzoate esters. The benzoate esters by capillary column gas chromatography with flame ionization detection (FID). VAFS EPA 200.2/245.7 tical Method: "Strong Acid Leachable Metals (SALM) in Soil", BC Ministry of PA Method 200.2. The sample is manually homogenized, dried at 60 degrees Celsius, itted for international soil samples), and a representative subsample of the dry material is for 2 hours by block digester using concentrated nitric and hydrochloric acids.

IC-CACO3-CALC-SK	Soll	Inorganic Carbon as CaCO3 Equivalent	Calculation
LEPH/HEPH-CALC-VA	Soil	LEPHs and HEPHs	BC MOE LABORATORY MANUAL (2005)

Solids or Water". Accordin by subtracting selected Pol results for Naphthalene and Benzo(b)fluoranthene, Ben are subtracted from EPH(C	Parks Analytic og to this meth ycyclic Aroma d Phenanthre zo(k)fluoranth 29-32). Anal	al Method for Contaminated Sites "Calculation of Light nod, LEPH and HEPH are calculated atic Hydrocarbon results from Extractable Petroleum Hy ne are subtracted from EPH(C10-19). To calculate HE nene, Benzo(a)pyrene, Dibenz(a,h)anthracene, Indeno(lysis of Extractable Petroleum Hydrocarbons adheres to Solids by GC/FID" (Version 2.1, July 20, 1999).	ydrocarbon results. To calculate LEPH, the individual PH, the individual results for Benz(a)anthracene, (1,2,3-c,d)pyrene, and Pyrene
ME-MS41-AX	Soil	Aqua Regia ICPMS	Aqua Regia ICPMS
water, mixed and analyzed concentrations of bismuth,	by inductivel mercury, mol	with aqua regia in a graphite heating block. After cooling y coupled plasma-atomic emission spectrometry. Follow ybdenum, silver and tungsten and diluted accordingly. cal results are corrected for inter-element spectral inter	wing this analysis, the results are reviewed for high Samples are then analysed by ICP-MS for the
MET-200.2-CCMS-VA	Soil	Metals in Soil by CRC ICPMS	EPA 200.2/6020A
Environment, 26 June 2009 sieved through a 2 mm (10 weighed. The sample is th	9, and proced mesh) sieve en digested a	lures from CSR Analytical Method: "Strong Acid Leacha lures adapted from EPA Method 200.2. The sample is (this sieve step is omitted for international soil samples at 95 degrees Celsius for 2 hours by block digester usin tract is by collision cell inductively coupled plasma - ma	manually homogenized, dried at 60 degrees Celsius, s), and a representative subsample of the dry material is g concentrated nitric and hydrochloric acids.
		total digestion technique. It is a very strong acid diges , elements bound in silicate structures are not normally	stion that is intended to dissolve those metals that may a dissolved by this procedure as they are not usually
MET-PASTE-ICP-VA	Soil	Metals in Soil (Paste) by ICPOES	Carter-CSSS / EPA 6010B (modified)
A soil extract produced by the Sampling and Methods of A		paste extraction procedure is analyzed for Sodium, Ca <i>I</i> . Carter.	Icium, and Magnesium by ICPOES as per "Soil
MOISTURE-VA	Soil	Moisture content	ASTM D2974-00 Method A
This analysis is carried out	gravimetrical	ly by drying the sample at 105 C for a minimum of six h	iours.
N-TOT-LECO-SK	Soil	Total Nitrogen by combustion method	SSSA (1996) P. 973-974
The sample is ignited in a c	combustion a	nalyzer where nitrogen in the reduced nitrous oxide gas	s is determined using a thermal conductivity detector.
NO3-AVAIL-SK	Soil	Available Nitrate-N	Method = Alberta Ag (1988)
Nitrate is quantitatively red cadmium column. The nitr	uced to nitrite ite (reduced r de followed by	d from the soil using a dilute calcium chloride solution. by passage of the sample through a copperized hitrate plus original nitrite) is then determined by y coupling with N-(1-naphthyl) ethylenediamine dihydro orimetrically at 520nm.	chloride. The resulting water soluble dye has a
Reference: Recommended Methods of	Soil Analysis	s for Canadian Prairie Agricultural Soils. Alberta Agricul	ture (1988) p. 19 and 28
Recommended Methods of	f Soil Analysis Soil	s for Canadian Prairie Agricultural Soils. Alberta Agricul Nitrate (N) in Soil (Paste) by IC	lture (1988) p. 19 and 28 Carter-CSSS / EPA 300.1 (modified)
Recommended Methods of NO3-PASTE-IC-VA	Soil	с с	Carter-CSSS / EPA 300.1 (modified)
Recommended Methods of NO3-PASTE-IC-VA A soil extract produced by t	Soil	Nitrate (N) in Soil (Paste) by IC	Carter-CSSS / EPA 300.1 (modified)
Recommended Methods of NO3-PASTE-IC-VA A soil extract produced by t detection. PAH-TMB-H/A-MS-VA This analysis is carried out the United States Environm sediment/soil with a 1:1 miz column gas chromatograph	Soil the saturated Soil using proced nental Protect xture of hexar ny with mass accurate quar	Nitrate (N) in Soil (Paste) by IC paste extraction procedure is analyzed for nitrate (as N PAH - Rotary Extraction (Hexane/Acetone) lures adapted from "Test Methods for Evaluating Solid V tion Agency (EPA). The procedure uses a mechanical s he and acetone. The extract is then solvent exchanged spectrometric detection (GC/MS). Surrogate recoveries nititation. Because the two isomers cannot be readily ch	Carter-CSSS / EPA 300.1 (modified) A) by Ion Chromatography with conductivity or UV EPA 3570/8270 Waste" SW-846, Methods 3570 & 8270, published by shaking technique to extract a subsample of the d to toluene. The final extract is analysed by capillary s may not be reported in cases where interferences from
Recommended Methods of NO3-PASTE-IC-VA A soil extract produced by t detection. PAH-TMB-H/A-MS-VA This analysis is carried out the United States Environm sediment/soil with a 1:1 miz column gas chromatograph the sample matrix prevent a	Soil the saturated Soil using proced nental Protect xture of hexar ny with mass accurate quar	Nitrate (N) in Soil (Paste) by IC paste extraction procedure is analyzed for nitrate (as N PAH - Rotary Extraction (Hexane/Acetone) lures adapted from "Test Methods for Evaluating Solid V tion Agency (EPA). The procedure uses a mechanical s he and acetone. The extract is then solvent exchanged spectrometric detection (GC/MS). Surrogate recoveries nititation. Because the two isomers cannot be readily ch	Carter-CSSS / EPA 300.1 (modified) A) by Ion Chromatography with conductivity or UV EPA 3570/8270 Waste" SW-846, Methods 3570 & 8270, published by shaking technique to extract a subsample of the d to toluene. The final extract is analysed by capillary s may not be reported in cases where interferences from
Recommended Methods of NO3-PASTE-IC-VA A soil extract produced by the detection. PAH-TMB-H/A-MS-VA This analysis is carried out the United States Environm sediment/soil with a 1:1 mit column gas chromatograph the sample matrix prevent a reported as part of the bent PH-1:2-VA This analysis is carried out Physical/Inorganic and Mis	Soil the saturated Soil using proced nental Protect xture of hexar y with mass : accurate quar zo(b)fluoranth Soil in accordanc c. Constituen	Nitrate (N) in Soil (Paste) by IC paste extraction procedure is analyzed for nitrate (as N PAH - Rotary Extraction (Hexane/Acetone) lures adapted from "Test Methods for Evaluating Solid V tion Agency (EPA). The procedure uses a mechanical so the and acetone. The extract is then solvent exchanged spectrometric detection (GC/MS). Surrogate recoveries nitiation. Because the two isomers cannot be readily ch thene parameter. pH in Soil (1:2 Soil:Water Extraction) e with procedures described in the pH, Electrometric in ts, BC Environmental Laboratory Manual 2007. The pr	Carter-CSSS / EPA 300.1 (modified) 4) by Ion Chromatography with conductivity or UV EPA 3570/8270 Waste" SW-846, Methods 3570 & 8270, published by shaking technique to extract a subsample of the 4 to toluene. The final extract is analysed by capillary a may not be reported in cases where interferences from promatographically separated, benzo(j)fluoranthene is BC WLAP METHOD: PH, ELECTROMETRIC, SOIL
Recommended Methods of NO3-PASTE-IC-VA A soil extract produced by the detection. PAH-TMB-H/A-MS-VA This analysis is carried out the United States Environm sediment/soil with a 1:1 mit column gas chromatograph the sample matrix prevent a reported as part of the bent PH-1:2-VA This analysis is carried out Physical/Inorganic and Mis (No. 10 / 2mm) sample with	Soil the saturated Soil using proced nental Protect xture of hexar y with mass : accurate quar zo(b)fluoranth Soil in accordanc c. Constituen	Nitrate (N) in Soil (Paste) by IC paste extraction procedure is analyzed for nitrate (as N PAH - Rotary Extraction (Hexane/Acetone) lures adapted from "Test Methods for Evaluating Solid V tion Agency (EPA). The procedure uses a mechanical so the and acetone. The extract is then solvent exchanged spectrometric detection (GC/MS). Surrogate recoveries nitiation. Because the two isomers cannot be readily ch thene parameter. pH in Soil (1:2 Soil:Water Extraction) e with procedures described in the pH, Electrometric in ts, BC Environmental Laboratory Manual 2007. The pr	Carter-CSSS / EPA 300.1 (modified) I) by Ion Chromatography with conductivity or UV EPA 3570/8270 Waste" SW-846, Methods 3570 & 8270, published by shaking technique to extract a subsample of the d to toluene. The final extract is analysed by capillary s may not be reported in cases where interferences from promatographically separated, benzo(j)fluoranthene is BC WLAP METHOD: PH, ELECTROMETRIC, SOIL a Soil and Sediment method - Section B procedure involves mixing the dried (at <60°C) and sieved

	Soil	Particle size - Sieve and Pipette	SSIR-51 METHOD 3.2.1
Particle size distribution is the pipette sedimentation			s performed for coarse particles, wet sieving for sand particles ar
Reference:			
		Laboratory Methods Manual. Soil Survey Investources Conservation Service.	stigations Report No. 5. Method 3.2.1.2.2. United States
S-TOT-LECO-SK	Soil	Total Sulphur by combustion method	ISO 15178:2000
The sample is ignited in a	a combustion	analyzer where sulfur in the reduced SO2 gas	s is determined using a thermal conductivity detector.
SAR-PASTE-CALC-VA	Soil	Sodium Adsorption Ratio (Sat. Paste)	Calculation
		d paste extraction procedure is analyzed for S Sampling and Methods of Analysis" by M. Car	Sodium, Calcium, and Magnesium by ICPOES. Sodium Adsorpti ter.
SAT-PCNT-VA	Soil	Saturation Percentage	Carter-CSSS
		l volume of water present in a saturated paste bed in "Soil Sampling and Methods of Analysis	(in mL) divided by the dry weight of the sample (in grams), " by M. Carter.
SO4-AVAIL-SK	Soil	Available Sulfate-S	REC METH SOIL ANAL - AB. AG(1988)
Plant available sulfur in th	ne soil is extra	acted with a weak calcium chloride solution. To	otal S in the extract is then determined by ICP-OES.
SO4-PASTE-IC-VA	Soil	Sulfate in Soil (Paste) by IC	Carter-CSSS / EPA 300.1 (modified)
A soil extract produced by	y the saturate	d paste extraction procedure is analyzed for s	ulfate by Ion Chromatography with conductivity detection.
TGR2-CALC-VA	Soil	Theoretical Gypsum Requirement	J. Ashworth et al (1999)
units of tonnes per hectar "A Comparison of Method www.alsglobal.com. TGR TGR values are capped a	re (t/ha) for a ds for Gypsum R(sodic), inten at 50 t/ha, con	treatment depth of 15cm. TGR(brine), intenden n Requirement of Brine-Contaminated Soils", I nded for naturally sodic soils, uses the Oster a	d to remediate brine-contaminated or sodic soils, and is provided ed for brine-contaminated soils, is calculated using Method A fro by J. Ashworth (Cdn J. of Soil Science, 1999), available at nd Frenkel method (Method B) from the same paper. Reported idment. To convert TGR from t/ha to tons/acre, multiply by 0.440 tment depth (cm) / 15 cm].
TO DELETITINE & TER VAIU	Soil	Misc VOCs in soil by Headspace GCMS	EPA8260B. 5021. BC MELP
	3011		EPA02000, SUZT, DC MELP
VOC-M2-HSMS-VA The soil methanol extract	is added to w	, ,	al to equilibrium. The headspace from the vial is transferred into
VOC-M2-HSMS-VA The soil methanol extract gas chromatograph. Targ	is added to w get compound	vater and reagents, then heated in a sealed vi	al to equilibrium. The headspace from the vial is transferred into
VOC-M2-HSMS-VA The soil methanol extract gas chromatograph. Targ VOC7/VOC-SURR-MS-VA	is added to w get compound Soil	vater and reagents, then heated in a sealed vi d concentrations are measured using mass sp	al to equilibrium. The headspace from the vial is transferred into ectrometry detection. EPA METHODS 8260B & 524.2
VOC-M2-HSMS-VA The soil methanol extract gas chromatograph. Targ VOC7/VOC-SURR-MS-VA ALS test methods may inc	is added to w get compound Soil corporate mod	vater and reagents, then heated in a sealed vi d concentrations are measured using mass sp VOC7 and/or VOC Surrogates for Soils difications from specified reference methods t	al to equilibrium. The headspace from the vial is transferred into ectrometry detection. EPA METHODS 8260B & 524.2
VOC-M2-HSMS-VA The soil methanol extract gas chromatograph. Targ VOC7/VOC-SURR-MS-VA ALS test methods may inc The last two letters of the a	is added to w get compound Soil corporate mod above test coo	vater and reagents, then heated in a sealed vi d concentrations are measured using mass sp VOC7 and/or VOC Surrogates for Soils difications from specified reference methods t	al to equilibrium. The headspace from the vial is transferred into ectrometry detection. EPA METHODS 8260B & 524.2 o improve performance.
VOC-M2-HSMS-VA The soil methanol extract gas chromatograph. Targ VOC7/VOC-SURR-MS-VA ALS test methods may inc The last two letters of the a Laboratory Definition Coo	is added to w get compound Soil corporate mod above test coo de Labor	vater and reagents, then heated in a sealed vid d concentrations are measured using mass sp VOC7 and/or VOC Surrogates for Soils difications from specified reference methods t de(s) indicate the laboratory that performed ar	al to equilibrium. The headspace from the vial is transferred into ectrometry detection. EPA METHODS 8260B & 524.2 o improve performance. halytical analysis for that test. Refer to the list below:
VOC-M2-HSMS-VA The soil methanol extract gas chromatograph. Targ VOC7/VOC-SURR-MS-VA ALS test methods may ind The last two letters of the a Laboratory Definition Coo SK	is added to w get compound Soil corporate mod above test coo de Labor ALS E	vater and reagents, then heated in a sealed vide concentrations are measured using mass sp VOC7 and/or VOC Surrogates for Soils difications from specified reference methods to de(s) indicate the laboratory that performed are ratory Location	al to equilibrium. The headspace from the vial is transferred into ectrometry detection. EPA METHODS 8260B & 524.2 o improve performance. halytical analysis for that test. Refer to the list below:
VOC-M2-HSMS-VA The soil methanol extract gas chromatograph. Targ VOC7/VOC-SURR-MS-VA ALS test methods may ind The last two letters of the a Laboratory Definition Cod SK AX	is added to w get compound Soil corporate mor above test coo de Labor ALS E ALS M	vater and reagents, then heated in a sealed vid d concentrations are measured using mass sp VOC7 and/or VOC Surrogates for Soils difications from specified reference methods t de(s) indicate the laboratory that performed ar ratory Location	al to equilibrium. The headspace from the vial is transferred into ectrometry detection. EPA METHODS 8260B & 524.2 o improve performance. halytical analysis for that test. Refer to the list below:
VOC-M2-HSMS-VA The soil methanol extract gas chromatograph. Targ VOC7/VOC-SURR-MS-VA ALS test methods may ind The last two letters of the a Laboratory Definition Coo SK AX	is added to w get compound Soil corporate mod above test coo de Labor ALS E ALS M ALS E	vater and reagents, then heated in a sealed vid d concentrations are measured using mass sp VOC7 and/or VOC Surrogates for Soils difications from specified reference methods to de(s) indicate the laboratory that performed ar ratory Location ENVIRONMENTAL - SASKATOON, SASKATO MINERALS - VANCOUVER, B.C., CANADA	al to equilibrium. The headspace from the vial is transferred into ectrometry detection. EPA METHODS 8260B & 524.2 o improve performance. halytical analysis for that test. Refer to the list below:
VOC-M2-HSMS-VA The soil methanol extract gas chromatograph. Targ VOC7/VOC-SURR-MS-VA	is added to w get compound Soil corporate mod above test coo de Labor ALS E ALS M ALS E	vater and reagents, then heated in a sealed vid d concentrations are measured using mass sp VOC7 and/or VOC Surrogates for Soils difications from specified reference methods t de(s) indicate the laboratory that performed ar ratory Location ENVIRONMENTAL - SASKATOON, SASKATO MINERALS - VANCOUVER, B.C., CANADA ENVIRONMENTAL - VANCOUVER, BRITISH	al to equilibrium. The headspace from the vial is transferred into ectrometry detection. EPA METHODS 8260B & 524.2 o improve performance. halytical analysis for that test. Refer to the list below:

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

		Workorder	: L151822	5	Report Date: 30)-OCT-14	Pa	ige 1 of 5
Client:	MOUNT POLLEY PO Box 12 Likely BC V0L 1N							
Contact:	Colleen Hughes							
ſest	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
EPH-TUMB-FID-	VA Soil							
Batch	R2953834							
WG1955441-3 EPH10-19	3 IRM	ALS PHC2 R	95.3		%		70-130	21-SEP-14
EPH19-32			101.2		%		70-130	21-SEP-14
WG1955441- EPH10-19	1 MB		<200		mg/kg		200	21-SEP-14
EPH19-32			<200		mg/kg		200	21-SEP-14 21-SEP-14
			~200		iiig/kg		200	21-3LF-14
PAH-TMB-H/A-N	-							
Batch WG1955441-	R2954691 4 IRM	ALS PAH1 R						
Acenaphther		ALS FART R	99.9		%		60-130	22-SEP-14
Acenaphthyle	ene		103.4		%		60-130	22-SEP-14
Anthracene			107.9		%		60-130	22-SEP-14
Benz(a)anthr	acene		104.4		%		60-130	22-SEP-14
Benzo(a)pyre	ene		100.2		%		60-130	22-SEP-14
Benzo(b)fluo	ranthene		108.9		%		60-130	22-SEP-14
Benzo(g,h,i)p	berylene		123.3		%		60-130	22-SEP-14
Benzo(k)fluo	ranthene		106.4		%		60-130	22-SEP-14
Chrysene			121.3		%		60-130	22-SEP-14
Dibenz(a,h)a	nthracene		120.4		%		60-130	22-SEP-14
Fluoranthene)		109.1		%		60-130	22-SEP-14
Fluorene			105.1		%		60-130	22-SEP-14
Indeno(1,2,3	-c,d)pyrene		117.2		%		60-130	22-SEP-14
2-Methylnaph	nthalene		99.9		%		60-130	22-SEP-14
Naphthalene			105.6		%		50-130	22-SEP-14
Phenanthren	e		108.9		%		60-130	22-SEP-14
Pyrene			107.1		%		60-130	22-SEP-14
WG1955441- Acenaphther			<0.0050		mg/kg		0.005	22-SEP-14
Acenaphthyle			<0.0050		mg/kg		0.005	22-SEP-14
Anthracene			<0.0040		mg/kg		0.004	22-SEP-14
Benz(a)anthr	acene		<0.010		mg/kg		0.01	22-SEP-14
Benzo(a)pyre			<0.010		mg/kg		0.01	22-SEP-14
Benzo(b)fluo			<0.010		mg/kg		0.01	22-SEP-14
Benzo(g,h,i)p	perylene		<0.010		mg/kg		0.01	22-SEP-14
Benzo(k)fluo	-		<0.010		mg/kg		0.01	22-SEP-14
Chrysene			<0.010		mg/kg		0.01	22-SEP-14

	Workorder	: L151822	5 Re	port Date: 3	0-OCT-14	Pa	ige 2 of 5
Test Ma	trix Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-VA So	il						
Batch R2954691							
WG1955441-1 MB							
Dibenz(a,h)anthracene		<0.0050		mg/kg		0.005	22-SEP-14
Fluoranthene		<0.010		mg/kg		0.01	22-SEP-14
Fluorene		<0.010		mg/kg		0.01	22-SEP-14
Indeno(1,2,3-c,d)pyrene		<0.010		mg/kg		0.01	22-SEP-14
2-Methylnaphthalene		<0.010		mg/kg		0.01	22-SEP-14
Naphthalene		<0.010		mg/kg		0.01	22-SEP-14
Phenanthrene		<0.010		mg/kg		0.01	22-SEP-14
Pyrene		<0.010		mg/kg		0.01	22-SEP-14
Surrogate: Naphthalene d8		94.7		%		50-130	22-SEP-14
Surrogate: Acenaphthene d1	0	93.6		%		60-130	22-SEP-14
Surrogate: Phenanthrene d10)	90.3		%		60-130	22-SEP-14
Surrogate: Chrysene d12		101.4		%		60-130	22-SEP-14
VOC-M2-HSMS-VA So	il						
Batch R2952710							
WG1954561-3 DUP	L1518225-5	9					
Acetone	<4.0	<4.0	RPD-NA	mg/kg	N/A	50	20-SEP-14
Carbon Disulfide	<0.050	<0.050	RPD-NA	mg/kg	N/A	50	20-SEP-14
2-Hexanone	<0.050	<0.050	RPD-NA	mg/kg	N/A	50	20-SEP-14
Methyl ethyl ketone (MEK)	<20	<20	RPD-NA	mg/kg	N/A	50	20-SEP-14
Methyl isobutyl ketone (MIBK) <0.050	<0.050	RPD-NA	mg/kg	N/A	50	20-SEP-14
Methyl isobutyl carbinol (MIB	C) <0.050	<0.050	RPD-NA	mg/kg	N/A	50	20-SEP-14
n-Heptane (nC7)	<0.050	<0.050	RPD-NA	mg/kg	N/A	50	20-SEP-14
n-Octane (nC8)	<0.050	<0.050	RPD-NA	mg/kg	N/A	50	20-SEP-14
n-Pentane	<2.5	<2.5	RPD-NA	mg/kg	N/A	50	20-SEP-14
1,2,3-Trimethylbenzene	<0.050	<0.050	RPD-NA	mg/kg	N/A	50	20-SEP-14
WG1952756-2 LCS							
Acetone		95.0		%		70-130	18-SEP-14
Carbon Disulfide		101.7		%		70-130	18-SEP-14
		114.8		%		70-130	18-SEP-14
2-Hexanone							
2-Hexanone Methyl isobutyl ketone (MIBK)	118.5		%		70-130	18-SEP-14
	,			% %		70-130 70-130	18-SEP-14 18-SEP-14
Methyl isobutyl ketone (MIBK	,	118.5					
Methyl isobutyl ketone (MIBK Methyl isobutyl carbinol (MIB	,	118.5 93.1		%		70-130	18-SEP-14

	Workorder	: L151822	25	Report Date: 3	0-OCT-14	Pa	ige 3 of
est Ma	trix Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-M2-HSMS-VA So	bil						
Batch R2952710							
WG1952756-2 LCS 1,2,3-Trimethylbenzene		107.9		%		70-130	18-SEP-14
WG1953608-2 LCS Acetone		85.4		%		70-130	20-SEP-14
Carbon Disulfide		101.3		%		70-130	20-SEP-14
2-Hexanone		101.2		%		70-130	20-SEP-14
Methyl isobutyl ketone (MIBK	()	106.7		%		70-130	20-SEP-14
Methyl isobutyl carbinol (MIB	C)	94.8		%		70-130	20-SEP-14
n-Heptane (nC7)		101.4		%		70-130	20-SEP-14
n-Octane (nC8)		102.0		%		70-130	20-SEP-14
n-Pentane		93.5		%		70-130	20-SEP-14
1,2,3-Trimethylbenzene		102.1		%		70-130	20-SEP-14
WG1954561-2 LCS Acetone		83.8		%		70-130	20-SEP-14
Carbon Disulfide		90.3		%		70-130	20-SEP-14
2-Hexanone		99.3		%		70-130	20-SEP-14
Methyl isobutyl ketone (MIBk	()	103.2		%		70-130	20-SEP-14
Methyl isobutyl carbinol (MIB		102.5		%		70-130	20 SEP-14
n-Heptane (nC7)	- /	93.5		%		70-130	20 SEP-14
n-Octane (nC8)		94.6		%		70-130	20 SEP-14
n-Pentane		105.1		%		70-130	20 SEP-14
1,2,3-Trimethylbenzene		94.7		%		70-130	20 SEP-14
WG1952756-1 MB		0				10 100	20-021-14
Acetone		<4.0		mg/kg		4	18-SEP-14
Carbon Disulfide		<0.050		mg/kg		0.05	18-SEP-14
2-Hexanone		<0.050		mg/kg		0.05	18-SEP-14
Methyl ethyl ketone (MEK)		<20		mg/kg		20	18-SEP-14
Methyl isobutyl ketone (MIBK	()	<0.050		mg/kg		0.05	18-SEP-14
Methyl isobutyl carbinol (MIB	C)	<0.050		mg/kg		0.05	18-SEP-14
n-Heptane (nC7)		<0.050		mg/kg		0.05	18-SEP-14
n-Octane (nC8)		<0.050		mg/kg		0.05	18-SEP-14
n-Pentane		<2.5		mg/kg		2.5	18-SEP-14
1,2,3-Trimethylbenzene		<0.050		mg/kg		0.05	18-SEP-14
WG1953608-1 MB							
Acetone		<4.0		mg/kg		4	20-SEP-14
Carbon Disulfide		<0.050		mg/kg		0.05	20-SEP-14

	Workorder: L151822	5 Report Date: 30)-OCT-14	Page 4 of 5
Fest Matrix	Reference Result	Qualifier Units	RPD Limit	Analyzed
VOC-M2-HSMS-VA Soil				
Batch R2952710				
WG1953608-1 MB 2-Hexanone	<0.050	mg/kg	0.05	20-SEP-14
Methyl ethyl ketone (MEK)	<20	mg/kg	20	20-SEP-14
Methyl isobutyl ketone (MIBK)	<0.050	mg/kg	0.05	20-SEP-14
Methyl isobutyl carbinol (MIBC)	<0.050	mg/kg	0.05	20-SEP-14
n-Heptane (nC7)	<0.050	mg/kg	0.05	20-SEP-14
n-Octane (nC8)	<0.050	mg/kg	0.05	20-SEP-14
n-Pentane	<2.5	mg/kg	2.5	20-SEP-14
1,2,3-Trimethylbenzene	<0.050	mg/kg	0.05	20-SEP-14
WG1954561-1 MB Acetone	<4.0	mg/kg	4	20-SEP-14
Carbon Disulfide	<0.050	mg/kg	0.05	20-SEP-14
2-Hexanone	<0.050	mg/kg	0.05	20-SEP-14
Methyl ethyl ketone (MEK)	<20	mg/kg	20	20-SEP-14
Methyl isobutyl ketone (MIBK)	<0.050	mg/kg	0.05	20-SEP-14
Methyl isobutyl carbinol (MIBC)	<0.050	mg/kg	0.05	20-SEP-14
n-Heptane (nC7)	<0.050	mg/kg	0.05	20-SEP-14
n-Octane (nC8)	<0.050	mg/kg	0.05	20-SEP-14
n-Pentane	<2.5	mg/kg	2.5	20-SEP-14
1,2,3-Trimethylbenzene	<0.050	mg/kg	0.05	20-SEP-14

Workorder: L1518225

Report Date: 30-OCT-14

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

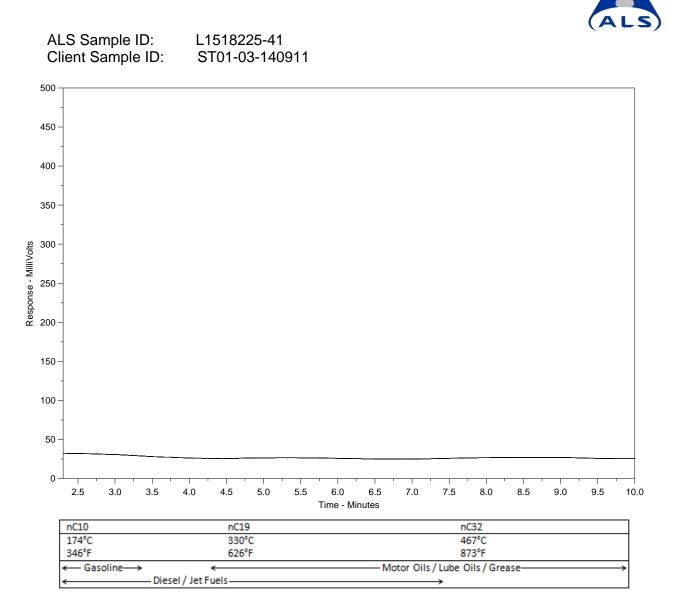
Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

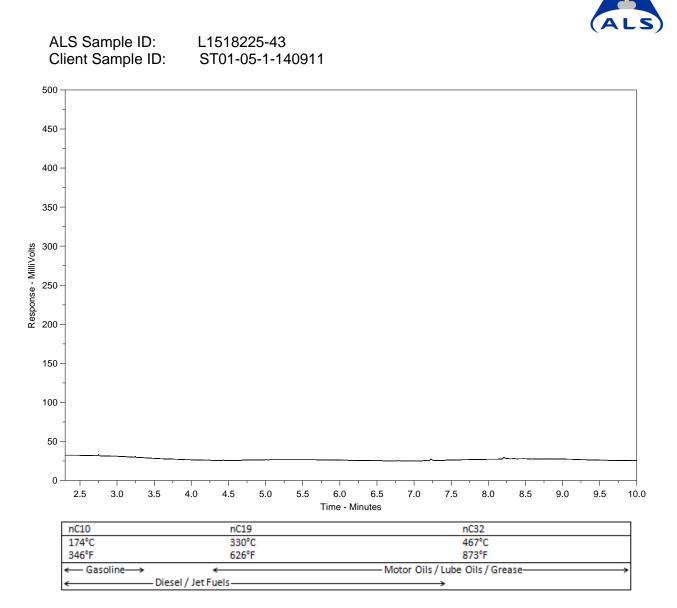
Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.


ALS LABORATORY GROUP ANALYTICAL REPORT

Sample ID		L1518225-43	L1518225-57	L1518225-59
Client ID	ST01-03-140911	ST01-05-01-140911	ST16-03-140913	ST18-03-01-140913
Matrix	Soil	Soil	Soil	Soil
Units	mg/kg	mg/kg	mg/kg	mg/kg
Analyte				
Xanthate as ethyl Xanthate	< 5 mg/kg	< 5 mg/kg	< 5 mg/kg	< 5 mg/kg
Matrix spike	80%	76%	84%	79%

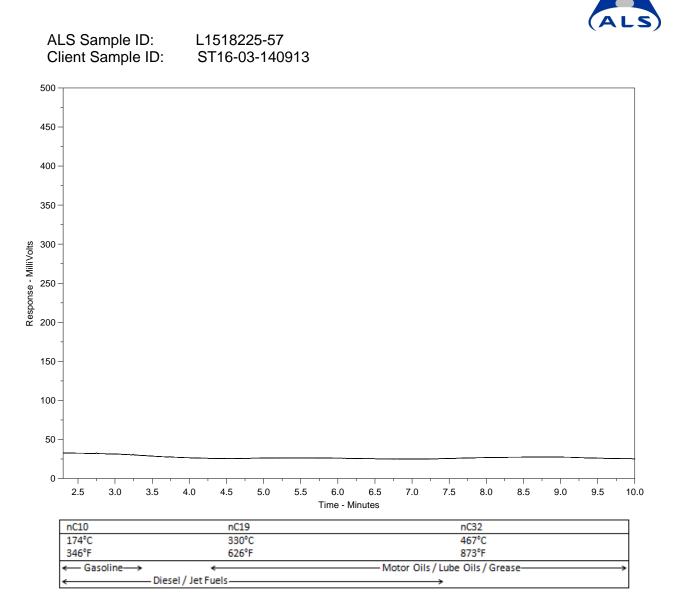
Notes:

Analysis of ethyl Xanthate in soil was conducted using procedures adapted from "*Flow injection analysis of ethyl xanthate by in-line dialysis and UV spectrophotometric detection. Talanta,* Volume 72, Issue 3, 15 May 2007, Pages 1017–1022."


L1518225-60	L1518225-63	L1518225-64
ST18-03-02-140913	ST15-02-02-140913	ST15-03-1409013
Soil	Soil	Soil
mg/kg	mg/kg	mg/kg
< 5 mg/kg	< 5 mg/kg	< 5 mg/kg
85%	83%	87%

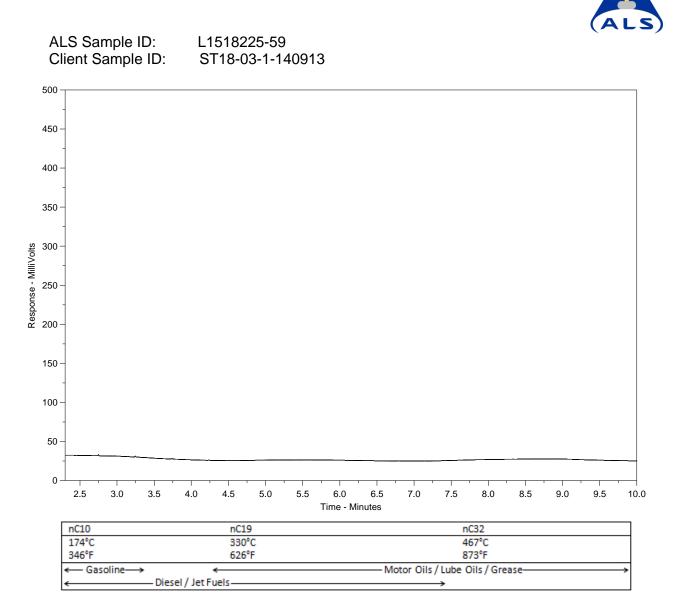
The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

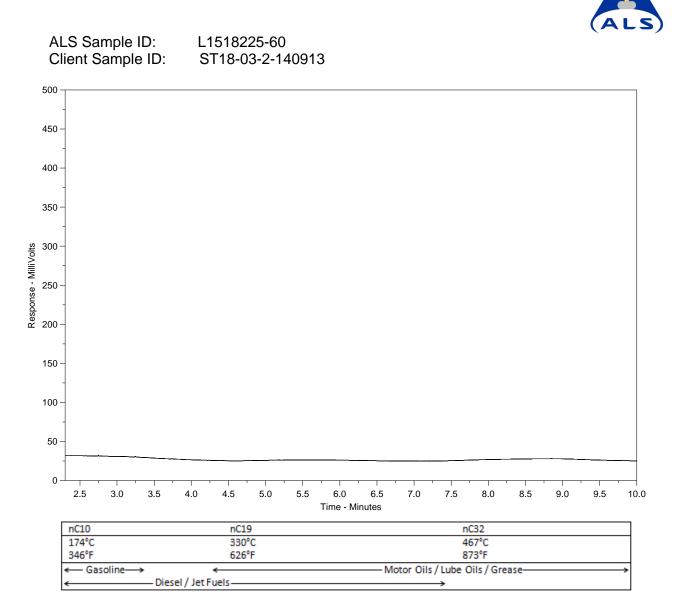
The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

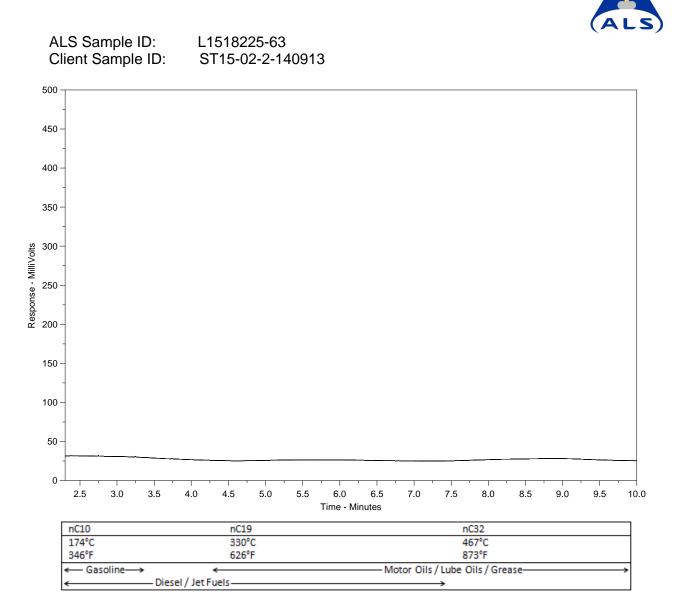
The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

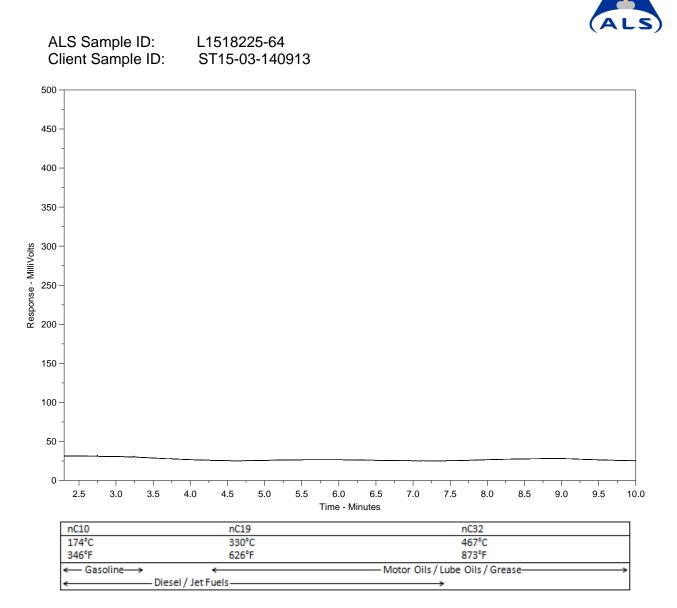
The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.


Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

MOUNT POLLEY MINING CORP. ATTN: Colleen Hughes PO Box 12 Likely BC V0L 1N0 Date Received:24-SEP-14Report Date:30-OCT-14 16:02 (MT)Version:FINAL REV. 3

Client Phone: 250-790-2215

Certificate of Analysis

Lab Work Order #: L1522556

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: NOT SUBMITTED 621717 P0017

Comments: 30-OCT-2014 Revision 3: This revision includes only specific analyses.

The data for Xanthates analysis is appended.

Can Dang Senior Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

ALS ENVIRONMENTAL ANALYTICAL REPORT

L1522556 CONTD.... PAGE 2 of 7 30-OCT-14 16:02 (MT) Version: FINAL REV. 3

	Sample ID Description Sampled Date Sampled Time Client ID	L1522556-4 Soil/Sediment 22-SEP-14 13:30 ST01-09-01- 140922	L1522556-6 Soil/Sediment 22-SEP-14 13:30 ST01-09-03- 140922		
Grouping	Analyte				
SOIL					
Volatile Organic Compounds	Acetone (mg/kg)	<4.0	<4.0		
	Carbon Disulfide (mg/kg)	<0.050	<0.050		
	n-Heptane (nC7) (mg/kg)	<0.050	<0.050		
	2-Hexanone (mg/kg)	<0.050	<0.050		
	Methyl ethyl ketone (MEK) (mg/kg)	<20	<20		
	Methyl isobutyl ketone (MIBK) (mg/kg)	<0.050	<0.050		
	Methyl isobutyl carbinol (MIBC) (mg/kg)	<0.050	<0.050		
	n-Octane (nC8) (mg/kg)	<0.050	<0.050		
	n-Pentane (mg/kg)	<2.5	<2.5		
	1,2,3-Trimethylbenzene (mg/kg)	<0.050	<0.050		
	Surrogate: 4-Bromofluorobenzene (SS) (%)	87.3	87.9		
	Surrogate: 1,4-Difluorobenzene (SS) (%)	85.2	87.1		
Hydrocarbons	EPH10-19 (mg/kg)	<200	<200		
	EPH19-32 (mg/kg)	<200	<200		
	LEPH (mg/kg)	<200	<200		
	HEPH (mg/kg)	<200	<200		
Polycyclic Aromatic Hydrocarbons	Acenaphthene (mg/kg)	<0.050	<0.050		
	Acenaphthylene (mg/kg)	<0.050	<0.050		
	Anthracene (mg/kg)	<0.050	<0.050		
	Benz(a)anthracene (mg/kg)	<0.050	<0.050		
	Benzo(a)pyrene (mg/kg)	<0.050	<0.050		
	Benzo(b)fluoranthene (mg/kg)	<0.050	<0.050		
	Benzo(g,h,i)perylene (mg/kg)	<0.050	<0.050		
	Benzo(k)fluoranthene (mg/kg)	<0.050	<0.050		
	Chrysene (mg/kg)	<0.050	<0.050		
	Dibenz(a,h)anthracene (mg/kg)	<0.050	<0.050		
	Fluoranthene (mg/kg)	<0.050	<0.050		
	Fluorene (mg/kg)	<0.050	<0.050		
	Indeno(1,2,3-c,d)pyrene (mg/kg)	<0.050	<0.050		
	2-Methylnaphthalene (mg/kg)	<0.050	<0.050		
	Naphthalene (mg/kg)	<0.050	<0.050		
	Phenanthrene (mg/kg)	<0.050	<0.050		
	Pyrene (mg/kg)	<0.050	<0.050		
	Surrogate: Acenaphthene d10 (%)	86.5	82.7		
	Surrogate: Chrysene d12 (%)	83.9	95.8		
	Surrogate: Naphthalene d8 (%)	81.7	79.3		

L1522556 CONTD.... PAGE 3 of 7 30-OCT-14 16:02 (MT) Version: FINAL REV. 3

ALS ENVIRONMENTAL ANALYTICAL REPORT

					on: FINAL RE
	Sample ID	L1522556-4	L1522556-6		
		Soil/Sediment	Soil/Sediment		
	Description				
	Sampled Date	22-SEP-14	22-SEP-14		
	Sampled Time	13:30	13:30		
	Client ID	ST01-09-01- 140922	ST01-09-03- 140922		
Grouping	Analyte				
SOIL	лицую				
	Surrageta: Dhenenthrong d10 (9()				
Polycyclic Aromatic Hydrocarbons	Surrogate: Phenanthrene d10 (%)	85.7	84.2		

QC Samples with Qualifiers & Comments:

QC Samples with Qualif			o	Applies to Opporte March 19(2)
QC Type Description		Parameter	Qualifier	Applies to Sample Number(s)
Duplicate		Acenaphthene	DLM	L1522556-4, -6
Duplicate		Acenaphthylene	DLM	L1522556-4, -6
Duplicate		Anthracene	DLM DLM	L1522556-4, -6 L1522556-4, -6
Duplicate Duplicate		Benz(a)anthracene Benzo(k)fluoranthene	DLM	L1522556-4, -6
Duplicate		Fluoranthene	DLM	L1522556-4, -6
Duplicate		Fluorene	DLM	L1522556-4, -6
Qualifiers for Individua	Baramatara			
Qualifier Descrip		Listed:		
DLM Detecti	on Limit Adjus	ted due to sample matrix effects.		
est Method Referenc	es:			
ALS Test Code	Matrix	Test Description		Method Reference**
ALK-PASTE-VA	Soil	Alkalinity in Soil (Paste) by Colour	r	Carter-CSSS / EPA 310.2 (modified)
A soil extract produced I	by the saturate	d paste extraction procedure is analy	zed for alkalinity by	y methyl orange colourimetry.
C-INORG-SK	Soil	Inorganic Carbon / Calcium Carbo	onate	SSSA (1996) P455-456
		h acid in an open system, carbon did to the carbonate content of the soil.	oxide is released to	the atmosphere. The decrease in sample weight
Reference:		Oren investrie Method for Long of Cod	an Disvide D 455	-456 In: J.M. Bartels et al. (ed.) Methods of soil analysis
		A and SSSA, Madison, WI. Book se		+ to m. o.w. Dartels et al. (et.) methods of son analysis
C-TOT-LECO-SK	Soil	Total Carbon by combustion meth	nod	SSSA (1996) P. 973-974
		•		mined using a thermal conductivity detector.
CAT-XTR-SK	Soil	Ammonium Acetate Extractable C	Cations	CSSS 19.4 - 1M NH4OAc Extraction @ pH 7
Exchangeable Ca, Mg, N	,	extracted from the soil using neutral extracted from carbonates or free gy		tate, then determined by ICP-OES. This method does
CEC-SK	Soil	Cation Exchange Capacity (NH4C		CSSS(1978) 3.321/Comm Soil Sci 17(7)
Soil exchange sites are	saturated with			the extract is determined colorimetrically.
CL-PASTE-COLOR-VA	Soil	Chloride in Soil (Paste) by Colour	imetry	Carter-CSSS / APHA 4500-CI E (modified)
A soil extract produced I		d paste extraction procedure is analy	5	
EC-PASTE-VA	Soil	Conductivity in Soil (Paste) by Me	ter	Carter-CSSS / APHA 2510B
		d paste extraction procedure is analy		
	Cail	EDI Lie Calida hy Tymbles and CC		
EPH-TUMB-FID-VA	Soil	EPH in Solids by Tumbler and GC		BC MOE EPH GCFID
samples are extracted w chromatography with fla	rith a 1:1 mixtu me ionization o	re of hexane and acetone using a rot	tary extraction tech ude Polycyclic Aror	bons in Solids by GC/FID", v2.1, July 1999. Soil nique modified from EPA 3570 prior to gas matic Hydrocarbons (PAH) and are therefore not
ETL-ESP-SK	Soil	Exchangeable Sodium Percentag	,	Calculation
GLY-EXT-FID-VA	Soil	Glycols in Soil by Wrist Shaker G	CFID	SW-846, METHOD 8015B, EPA
United States Environme followed by treatment of	ental Protection the extract wit	n Agency (EPA). The procedure invo h a strong base (NaOH) and benzoy	olves extraction of a I chloride to form th	Waste" SW-846, Method 8015B, published by the a subsample of the sediment/soil with deionized water, the corresponding benzoate esters. The benzoate esters tography with flame ionization detection (FID).
HG-200.2-CVAF-VA	Soil	Mercury in Soil by CVAFS		EPA 200.2/245.7
Environment, 26 June 2 sieved through a 2 mm (weighed. The sample is	009, and proce 10 mesh) siev then digested	edures adapted from EPA Method 20 e (this sieve step is omitted for interr	0.2. The sample is national soil sample block digester usi	nable Metals (SALM) in Soil", BC Ministry of s manually homogenized, dried at 60 degrees Celsius, es), and a representative subsample of the dry material is ng concentrated nitric and hydrochloric acids. trophotometry (EPA Method 245.7).

L1522556 CONTD PAGE 5 of 7 30-OCT-14 16:02 (MT) Version: FINAL REV. 3

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. By design, elements bound in silicate structures are not normally dissolved by this procedure as they are not usually mobile in the environment.

LEPH/HEPH-CALC-VA Soil LEPHs and HEPHs BC MOE LABORATORY MAN	IUAL (2005)

Light and Heavy Extractable Petroleum Hydrocarbons in Solids. These results are determined according to the British Columbia Ministry of Environment, Lands, and Parks Analytical Method for Contaminated Sites "Calculation of Light and Heavy Extractable Petroleum Hydrocarbons in Solids or Water". According to this method, LEPH and HEPH are calculated by subtracting selected Polycyclic Aromatic Hydrocarbon results from Extractable Petroleum Hydrocarbon results. To calculate LEPH, the individual

results for Naphthalene and Phenanthrene are subtracted from EPH(C10-19). To calculate HEPH, the individual results for Benz(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Dibenz(a,h)anthracene, Indeno(1,2,3-c,d)pyrene, and Pyrene are subtracted from EPH(C19-32). Analysis of Extractable Petroleum Hydrocarbons adheres to all prescribed elements of the BCMELP method "Extractable Petroleum Hydrocarbons in Solids by GC/FID" (Version 2.1, July 20, 1999).

ME-MS41-AX Soil Aqua Regia ICPMS

A prepared sample (0.50 g) is digested with aqua regia in a graphite heating block. After cooling, the resulting solution is diluted to with deionized water, mixed and analyzed by inductively coupled plasma-atomic emission spectrometry. Following this analysis, the results are reviewed for high concentrations of bismuth, mercury, molybdenum, silver and tungsten and diluted accordingly. Samples are then analysed by ICP-MS for the remaining suite of elements. The analytical results are corrected for inter-element spectral interferences.

MET-200.2-CCMS-VA Soil Metals in Soil by CRC ICPMS

This analysis is carried out using procedures from CSR Analytical Method: "Strong Acid Leachable Metals (SALM) in Soil", BC Ministry of Environment, 26 June 2009, and procedures adapted from EPA Method 200.2. The sample is manually homogenized, dried at 60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve (this sieve step is omitted for international soil samples), and a representative subsample of the dry material is weighed. The sample is then digested at 95 degrees Celsius for 2 hours by block digester using concentrated nitric and hydrochloric acids. Instrumental analysis of the digested extract is by collision cell inductively coupled plasma - mass spectrometry (modified from EPA Method 6020A).

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. By design, elements bound in silicate structures are not normally dissolved by this procedure as they are not usually mobile in the environment.

MET-PASTE-ICP-VA Soil Metals in Soil (Paste) by ICPOES

A soil extract produced by the saturated paste extraction procedure is analyzed for Sodium, Calcium, and Magnesium by ICPOES as per "Soil Sampling and Methods of Analysis" by M. Carter.

MOISTURE-VA	Soil	Moisture content
WUISTURE-VA	3011	

This analysis is carried out gravimetrically by drying the sample at 105 C for a minimum of six hours.

N-TOT-LECO-SK Soil Total Nitrogen by combustion method

The sample is ignited in a combustion analyzer where nitrogen in the reduced nitrous oxide gas is determined using a thermal conductivity detector.

Soil Available Nitrate-N NO3-AVAIL-SK

Available Nitrate and Nitrite are extracted from the soil using a dilute calcium chloride solution.

Nitrate is quantitatively reduced to nitrite by passage of the sample through a copperized

cadmium column. The nitrite (reduced nitrate plus original nitrite) is then determined by

diazotizing with sulfanilamide followed by coupling with N-(1-naphthyl) ethylenediamine dihydrochloride. The resulting water soluble dye has a magenta color which is measured at colorimetrically at 520nm.

Reference:

Recommended Methods of Soil Analysis for Canadian Prairie Agricultural Soils, Alberta Agriculture (1988) p. 19 and 28

NO3-PASTE-IC-VA Soil

Nitrate (N) in Soil (Paste) by IC

A soil extract produced by the saturated paste extraction procedure is analyzed for nitrate (as N) by Ion Chromatography with conductivity or UV detection.

PAH-TMB-H/A-MS-VA Soil PAH - Rotary Extraction (Hexane/Acetone)

This analysis is carried out using procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846, Methods 3570 & 8270, published by the United States Environmental Protection Agency (EPA). The procedure uses a mechanical shaking technique to extract a subsample of the sediment/soil with a 1:1 mixture of hexane and acetone. The extract is then solvent exchanged to toluene. The final extract is analysed by capillary column gas chromatography with mass spectrometric detection (GC/MS). Surrogate recoveries may not be reported in cases where interferences from the sample matrix prevent accurate quantitation. Because the two isomers cannot be readily chromatographically separated, benzo(i)fluoranthene is reported as part of the benzo(b)fluoranthene parameter.

pH in Soil (1:2 Soil:Water Extraction) **PH-1:2-VA** Soil

BC WLAP METHOD: PH, ELECTROMETRIC, SOIL

This analysis is carried out in accordance with procedures described in the pH, Electrometric in Soil and Sediment method - Section B

Method = Alberta Ag (1988)

Carter-CSSS / EPA 300.1 (modified)

Carter-CSSS / EPA 6010B (modified)

SSSA (1996) P. 973-974

ASTM D2974-00 Method A

Aqua Regia ICPMS

EPA 200.2/6020A

EPA 3570/8270

L1522556 CONTD.... PAGE 6 of 7 30-OCT-14 16:02 (MT) Version: FINAL REV. 3

Physical/Inorganic and Misc. Constituents. BC Environmental Laboratory Manual 2007. The procedure involves mixing the dried (at <60°C) and sieved (No. 10 / 2mm) sample with deionized/distilled water at a 1:2 ratio of sediment to water. The pH of the solution is then measured using a standard pH probe. PO4/K-AVAIL-SK Soil Plant Available Phosphorus and Potassium Comm. Soil Sci. Plant Anal, 25 (5&6) Plant available phosphorus and potassium are extracted from the soil using Modified Kelowna solution. Phosphorous in the soil extract is determined colorimetrically at 880 nm, while potassiumis determined by flame emission at 770 nm. **PSA-PIPET-DETAIL-SK** Soil Particle size - Sieve and Pipette SSIR-51 METHOD 3.2.1 Particle size distribution is determined by a combination of techniques. Dry sieving is performed for coarse particles, wet sieving for sand particles and the pipette sedimentation method for clay particles. Reference: Burt, R. (2009). Soil Survey Field and Laboratory Methods Manual. Soil Survey Investigations Report No. 5. Method 3.2.1.2.2. United States Department of Agriculture Natural Resources Conservation Service. S-TOT-LECO-SK Soil Total Sulphur by combustion method ISO 15178:2000 The sample is ignited in a combustion analyzer where sulfur in the reduced SO2 gas is determined using a thermal conductivity detector. Sodium Adsorption Ratio (Sat. Paste) SAR-PASTE-CALC-VA Soil Calculation A soil extract produced by the saturated paste extraction procedure is analyzed for Sodium, Calcium, and Magnesium by ICPOES. Sodium Adsorption Ratio (SAR) is calculated as per "Soil Sampling and Methods of Analysis" by M. Carter. Saturation Percentage Carter-CSSS SAT-PCNT-VA Soil Saturation Percentage (SP) is the total volume of water present in a saturated paste (in mL) divided by the dry weight of the sample (in grams), expressed as a percentage, as described in "Soil Sampling and Methods of Analysis" by M. Carter. Soil Available Sulfate-S REC METH SOIL ANAL - AB. AG(1988) SO4-AVAIL-SK Plant available sulfur in the soil is extracted with a weak calcium chloride solution. Total S in the extract is then determined by ICP-OES. SO4-PASTE-IC-VA Soil Sulfate in Soil (Paste) by IC Carter-CSSS / EPA 300.1 (modified) A soil extract produced by the saturated paste extraction procedure is analyzed for sulfate by Ion Chromatography with conductivity detection. **TGR2-CALC-VA** Soil Theoretical Gypsum Requirement J. Ashworth et al (1999) Theoretical Gypsum Requirement is an estimate of the gypsum amendment required to remediate brine-contaminated or sodic soils, and is provided in units of tonnes per hectare (t/ha) for a treatment depth of 15cm. TGR(brine), intended for brine-contaminated soils, is calculated using Method A from "A Comparison of Methods for Gypsum Requirement of Brine-Contaminated Soils", by J. Ashworth (Cdn J. of Soil Science, 1999), available at www.alsglobal.com. TGR(sodic), intended for naturally sodic soils, uses the Oster and Frenkel method (Method B) from the same paper. Reported TGR values are capped at 50 t/ha, considered the maximum practical gypsum amendment. To convert TGR from t/ha to tons/acre, multiply by 0.446. To determine a TGR value for an alternate treatment depth, multiply by [desired treatment depth (cm) / 15 cm]. VOC-M2-HSMS-VA Soil Misc VOCs in soil by Headspace GCMS EPA8260B, 5021, BC MELP The soil methanol extract is added to water and reagents, then heated in a sealed vial to equilibrium. The headspace from the vial is transferred into a gas chromatograph. Target compound concentrations are measured using mass spectrometry detection. VOC7/VOC-SURR-MS-VA VOC7 and/or VOC Surrogates for Soils EPA METHODS 8260B & 524.2 Soil ** ALS test methods may incorporate modifications from specified reference methods to improve performance. The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below: Laboratory Definition Code Laboratory Location SK ALS ENVIRONMENTAL - SASKATOON, SASKATCHEWAN, CANADA ALS MINERALS - VANCOUVER, B.C., CANADA AX VA ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA

Chain of Custody Numbers:

P0017

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. mg/kg - milligrams per kilogram based on dry weight of sample.

mg/kg wwt - milligrams per kilogram based on wet weight of sample.

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR).

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

		Workorde	r: L1522556	6	Report Date: 30)-OCT-14	Pa	ge 1 of 4
Client:	MOUNT POLI PO Box 12 Likely BC V0	LEY MINING CORP.						
Contact:	Colleen Hughe	es						
Fest	Ма	trix Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
EPH-TUMB-FID-	VA So	bil						
Batch	R2961400							
WG1960916-3 EPH10-19	B IRM	ALS PHC2			%		70 400	
EPH10-19 EPH19-32			96.4 95.2		%		70-130 70-130	28-SEP-14
	I MB		33.2		70		70-130	28-SEP-14
WG1960916-1 EPH10-19			<200		mg/kg		200	28-SEP-14
EPH19-32			<200		mg/kg		200	28-SEP-14
РАН-ТМВ-Н/А-М	IS-VA So	bil						
Batch	R2963445							
WG1960916-4		ALS PAH1						
Acenaphthen			96.3		%		60-130	29-SEP-14
Acenaphthyle	ene		109.5		%		60-130	29-SEP-14
Anthracene			121.1		%		60-130	29-SEP-14
Benz(a)anthr			100.6		%		60-130	29-SEP-14
Benzo(a)pyre			96.7		%		60-130	29-SEP-14
Benzo(b)fluor	ranthene		102.8		%		60-130	29-SEP-14
Benzo(g,h,i)p	•		111.8		%		60-130	29-SEP-14
Benzo(k)fluor	anthene		103.7		%		60-130	29-SEP-14
Chrysene			114.3		%		60-130	29-SEP-14
Dibenz(a,h)aı	nthracene		98.1		%		60-130	29-SEP-14
Fluoranthene			105.8		%		60-130	29-SEP-14
Fluorene			100.9		%		60-130	29-SEP-14
Indeno(1,2,3-	c,d)pyrene		107.2		%		60-130	29-SEP-14
2-Methylnaph	nthalene		92.4		%		60-130	29-SEP-14
Naphthalene			94.8		%		50-130	29-SEP-14
Phenanthren	е		114.3		%		60-130	29-SEP-14
Pyrene			106.1		%		60-130	29-SEP-14
WG1960916-1			0.0050					
Acenaphthen			<0.0050		mg/kg		0.005	29-SEP-14
Acenaphthyle	ene		<0.0050		mg/kg		0.005	29-SEP-14
Anthracene			<0.0040		mg/kg		0.004	29-SEP-14
Benz(a)anthr			<0.010		mg/kg		0.01	29-SEP-14
Benzo(a)pyre			<0.010		mg/kg		0.01	29-SEP-14
Benzo(b)fluor			<0.010		mg/kg		0.01	29-SEP-14
Benzo(g,h,i)p	erylene		<0.010		mg/kg		0.01	29-SEP-14
Benzo(k)fluor	anthene		<0.010		mg/kg		0.01	29-SEP-14
Chrysene			<0.010		mg/kg		0.01	29-SEP-14

		Workorder	: L152255	6	Report Date: 3	0-OCT-14	Pa	age 2 of
est	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-TMB-H/A-MS-VA	Soil							
Batch R2963445								
WG1960916-1 MB								
Dibenz(a,h)anthracene			<0.0050		mg/kg		0.005	29-SEP-14
Fluoranthene			<0.010		mg/kg		0.01	29-SEP-14
Fluorene			<0.010		mg/kg		0.01	29-SEP-14
Indeno(1,2,3-c,d)pyrene	•		<0.010		mg/kg		0.01	29-SEP-14
2-Methylnaphthalene			<0.010		mg/kg		0.01	29-SEP-14
Naphthalene			<0.010		mg/kg		0.01	29-SEP-14
Phenanthrene			<0.010		mg/kg		0.01	29-SEP-14
Pyrene			<0.010		mg/kg		0.01	29-SEP-14
Surrogate: Naphthalene	d8		88.9		%		50-130	29-SEP-14
Surrogate: Acenaphther	ne d10		88.1		%		60-130	29-SEP-14
Surrogate: Phenanthren	ie d10		84.9		%		60-130	29-SEP-14
Surrogate: Chrysene d1	2		87.9		%		60-130	29-SEP-14
VOC-M2-HSMS-VA	Soil							
Batch R2952710								
WG1960923-2 LCS								
Acetone			72.9		%		70-130	29-SEP-14
Carbon Disulfide			98.3		%		70-130	29-SEP-14
2-Hexanone			91.5		%		70-130	29-SEP-14
Methyl isobutyl ketone (l	MIBK)		95.8		%		70-130	29-SEP-14
Methyl isobutyl carbinol	(MIBC)		95.7		%		70-130	29-SEP-14
n-Heptane (nC7)			105.0		%		70-130	29-SEP-14
n-Octane (nC8)			109.9		%		70-130	29-SEP-14
n-Pentane			87.2		%		70-130	29-SEP-14
1,2,3-Trimethylbenzene			112.4		%		70-130	29-SEP-14
WG1960923-1 MB								
Acetone			<4.0		mg/kg		4	29-SEP-14
Carbon Disulfide			<0.050		mg/kg		0.05	29-SEP-14
2-Hexanone			<0.050		mg/kg		0.05	29-SEP-14
Methyl ethyl ketone (ME	K)		<20		mg/kg		20	29-SEP-14
Methyl isobutyl ketone (l	MIBK)		<0.050		mg/kg		0.05	29-SEP-14
Methyl isobutyl carbinol	(MIBC)		<0.050		mg/kg		0.05	29-SEP-14
n-Heptane (nC7)			<0.050		mg/kg		0.05	29-SEP-14
,								
n-Octane (nC8)			<0.050		mg/kg		0.05	29-SEP-14

		Workorder	orkorder: L1522556 Report Date: 30-OC		0-OCT-14	OCT-14 Page 3 of		
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-M2-HSMS-VA	Soil							
Batch R2952710 WG1960923-1 MB								
1,2,3-Trimethylbenzene			<0.050		mg/kg		0.05	29-SEP-14

Workorder: L1522556

Report Date: 30-OCT-14

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

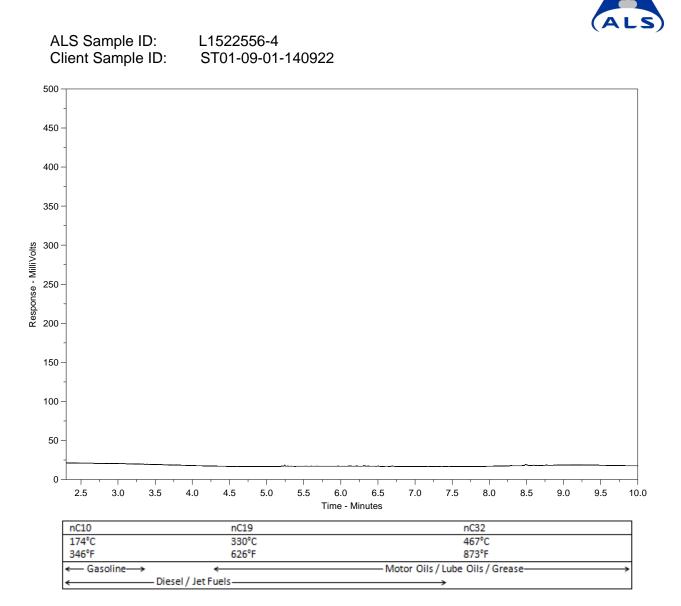
 Qualifier	ualifier Description	
DLM	Detection Limit Adjusted due to sample matrix effects.	
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.	

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

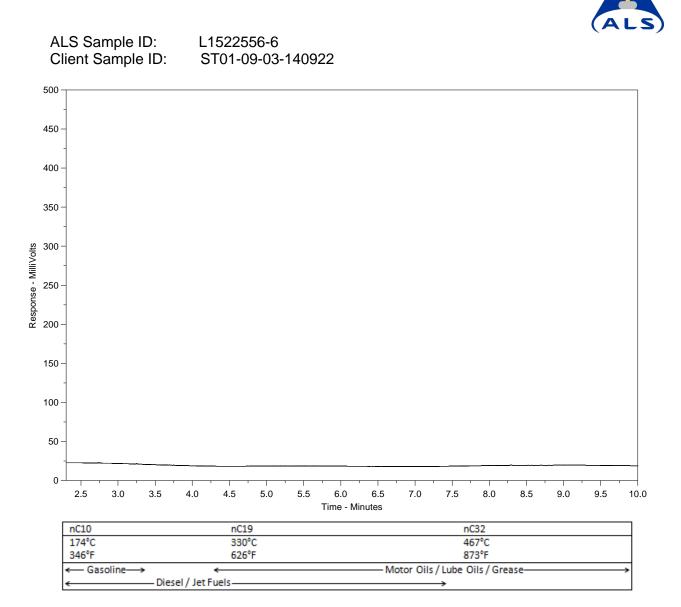
The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.


Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

ALS LABORATORY GROUP ANALYTICAL REPORT

Sample ID	L1522556-4	L1522556-6
Client ID	ST01-09-01-140922	ST01-09-03-140922
Matrix	Soil	Soil
Units	mg/kg	mg/kg
Analyte		
Xanthate as ethyl Xanthate	< 5 mg/kg	< 5 mg/kg
Matrix spike	80%	76%

Notes:


Analysis of ethyl Xanthate in soil was conducted using procedures adapted from "*Flow injection analysis of ethyl xanthate by in-line dialysis and UV spectrophotometric detection. Talanta*, Volume 72, Issue 3, 15 May 2007, Pages 1017–1022."

The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.

The EPH Hydrocarbon Distribution Report (HDR) is intended to assist you in characterizing hydrocarbon products that may be present in your sample. For further interpretation, a current library of reference products is available on www.alsglobal.com or upon request.

The scale at the bottom of the chromatogram indicates the approximate retention times of common petroleum products, and three n-alkane hydrocarbon marker compounds. Retention times may vary between samples by as much as 0.5 minutes.

Peak heights in this report are a function of the sample concentration, the sample amount extracted, the sample dilution factor, and the response scale at the left.